
Abstract. An electronic structure-based construction of
diabatic states from adiabatic states is formulated that is
applicable when individual diabatic states contain sev-
eral dominant con®gurations. It is accomplished by
maximizing the electronic uniformity of the diabatic
states with respect to their dominant con®gurations
throughout the entire nuclear coordinate region. The
con®gurations are generated from unambiguously
de®ned diabatization-adapted molecular orbitals. The
orthogonal transformation from adiabatic to diabatic
states is deduced by an intrinsic analysis of the adiabatic
CI coe�cients, without calculating matrix elements of
additional, derivative or non-derivative operators. The
practicality of the method is demonstrated by applying it
to the conical intersection region of the 11A1 and 21A1

states of ozone.
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1 Introduction

Regions in coordinate space where two or more
potential energy surfaces closely approach each other
and exhibit avoided crossings, or even conical intersec-
tions, are of great chemical interest in as much as they
are likely places for the occurrence of radiationless
transitions, phenomena of importance in many physi-
cochemical contexts. Unfortunately, the wavefunctions
as well as energies of the interacting states typically
undergo rapid changes in these regions, and this
circumstance gives rise to nontrivial di�culties in
quantitative theoretical treatments, quantum chemical
as well as dynamical, of the relevant processes. An
e�ective approach to overcoming these problems is the
resolution of such states, called adiabatic in this context,

in terms of diabatic states, since the latter typically
exhibit considerably simpler behavior and, in particular,
less rapid changes. The interpolation and parametric
modeling, too, of adiabatic energy surfaces in such
regions can be simpli®ed by decomposition in terms of
diabatic states, since the energy matrix elements between
the latter are more easily ®tted by such approximate
representations.

However, while (aside from degeneracies) adiabatic
wavefunctions are unique by virtue of their unambigu-
ous de®nition as eigenfunctions of the hamiltonian, such
is not the case for diabatic states and their optimal
de®nition depends upon the speci®c use to which they
are put. There exist two basically di�erent conceptual
approaches to this problem, namely one from the dy-
namic perspective and the other from the electronic
structure perspective. In the dynamic context, one has to
deal with a set of coupled di�erential equations between
the adiabatic states with large coupling terms (nuclear-
derivative matrix elements between electronic states) and
the construction of diabatic states is guided by the goal
of minimizing the coupling terms in the dynamic equations
so that they can be accounted for perturbatively [1]. In
the electronic structure context, on the other hand, one
starts with the observation that, in certain regions of
coordinate space, drastic changes occur in the electronic
structures of the adiabatic states and the construction of
diabatic states is guided by the goal of ®nding wave-
functions whose electronic structures maintain their
essential characteristics over the entirety of such regions.
Such diabatic resolutions can be useful in various
quantum chemical analyses, e.g., in the study of inter-
sections. The expectation is furthermore justi®ed that
dynamic coupling elements between quantum chemically
determined diabatic states, too, are very much smaller
than those between adiabatic states and, while perhaps
not perfectly minimal, certainly amenable to a pertur-
bative treatment.

The construction of diabatic states on the basis of
electronic structure criteria has been considered in the
past. Already in 1952 Mulliken had suggested the use of
dipole moments to sort out diabatic states [2] and this
method was further pursued by Hush et al. [3]. Recently,
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Cave and Newton have developed this approach even
further [4]. Hendekovic et al. suggested two methods,
one based on the maximization of the sum of squares of
natural spin orbital occupation numbers and another
based on the interpolation of one-electron densities [5].
Spiegelman and Malrieu have advanced methods based
on e�ective hamiltonians [6] and so have Gadea, Pelis-
sier et al. [7]. Werner et al. used a weighted sum of
squares of adiabatic con®guration coe�cients for special
types of wavefunctions [8]. Hirsch et al. as well as Peric
et al. [9] have explored methods based on the optimi-
zation of suitable expectation values, such as dipole
moments, quadrupole moments, transition moments
and angular moment components. Pacher et al. intro-
duced a ``minimal block diagonalization'' for forming
diabatic states and this approach has been further
developed by Domcke et al. [10]. A review has recently
been given by Pacher et al. [11].

Another method based on the con®gurational ex-
pansion of electronic wavefunctions has recently been
developed by the present authors [12]. Its particular
emphasis is on the treatment of situations where the
diabatic states contain several essential dominant elec-
tronic con®gurations rather than only one. The diabatic
states are obtained as orthogonal superpositions of the
adiabatic wavefunctions by maximizing the con®gura-
tional uniformity of the former. In the present note, this
approach is further pursued, simpli®ed and generalized,
and some issues that were not previously addressed are
resolved. In particular, an algorithm is given for de-
termining those molecular orbitals (MOs) that are most
e�ective for the decomposition of adiabatic states into
diabatic states.

2 Fundamental aspects of the electronic structure
approach

2.1 Con®gurational expansions of adiabatic
and diabatic states

Let

wn �
XL

a

vacan n � 1; 2; . . . ;N � L �1�

denote the CI expansions of N given adiabatic states wn
in terms of a large number, L, of con®gurations va. The
goal is to express these adiabatic states as superpositions
of an equal number of diabatic states /k by an orthog-
onal transformation, i.e.,

wn �
X

k

Tnk/k; k; n � 1; 2; . . . ;N ; TTy � I; �2�

where the /k satisfy certain criteria of electronic
structure uniformity over some region in nuclear coor-
dinate space. This objective will be accomplished by
deducing the diabatic states from the known adiabatic
states through the inverse transformation

/k �
X

n

wnTnk k; n � 1; 2 . . . N ; �3�

whence

/k �
XL

a

vadak; k � 1; 2; . . . ;N ; �4�

with

dak �
X

n

canTnk; for all a: �5�

The matrix T will be determined by enforcing the
electronic structure uniformity requirement. Diagonal-
ization of the N � N hamiltonian matrix Hjk � h/jjH j/ki
will manifestly recover the original adiabatic states as
superpositions of the diabatic states and yield the
adiabatic state energies.

2.2 Uniformity of electronic structure

What is meant by ``uniformity of electronic structure''?
The implementation of such an assessment requires the
ability (i) to quantitatively assess the character of the
structure of a wavefunction in electronic coordinate space
and (ii) to monitor changes in these characteristics as
functions of the nuclear positions over regions in nuclear
coordinate space. When these characteristics change only
little for a wavefunction in such a region, then we
consider the electronic structure of that wavefunction
uniform in that region. The present approach to this
problem is based on the following premises regarding
adiabatic states which are satis®ed for many electronic
wavefunctions.

1. The N adiabatic states can all be expressed in terms
of the same L orthonormal con®gurations va which, in
turn, are constructed from the same set of orthonormal
molecular orbitals. For the purpose of the following
derivations, it will soon be seen expedient to assume that
the con®gurations span a full con®guration space, such
as is the case when the N states are obtained from an N-
state-averaged multicon®gurational self-consistent ®eld
MCSCF calculation in a full con®guration space.
However, we shall see in Sect. 7 that the method to be
developed is equally applicable for wavefunctions not
given by full-space expansions. Because of the orbital
freedom in a full con®guration space, an additional
appropriate condition must be imposed to de®ne the
MOs unambiguously. This problem will be addressed in
Sect. 3. Under these premises, the electronic structure of
each wavefunction wn of Eq.(1) can be characterized by its
CI expansion coe�cients ca.
2. More speci®cally we presume that, in each expan-

sion given by Eq.(1), there are a relatively small number
of dominant con®gurations and we consider the elec-
tronic structure of wn to be characterized by this dominant
part of its CI expansion. The de®nition of ``dominance''
is of course somewhat fuzzy but, as a rule of thumb,
con®gurations with CI coe�cients larger than about 0.2
in at least some part of the nuclear coordinate region
under scrutiny are reasonable candidates. Typically, the
various wn embody di�erent dominant con®gurations
and we denote by vd with d � 1; 2; . . . ;M�N �M>L�
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the collection of all M con®gurations that are dominant
in at least one of the N states.
3. In order to compare the electronic structure of a

state at di�erent points in a nuclear coordinate region,
we must compare the dominant part of the con®gura-
tional expansions of its wavefunctions at these points.
To this end, it is necessary to be able to follow the

deformations of the individual MOs in electronic coor-
dinate space as the molecule deforms corresponding to
following a continuous path in nuclear coordinate space.
From an operational point of view, this means that one
must be able to establish a one-to-one correspondence
between the unambiguously determined MOs of a state at
di�erent points in nuclear coordinate space when these
points lie close to each other. This problem will be
addressed in Sect. 4.
Having thus determined, for a given set of adiabatic

states, a speci®c set of consistent MOs that deform
continuously as the nuclear coordinates follow any
continuous path in the nuclear coordinate region of
interest, one can then form the con®gurations va from
this orbital set by a speci®ed space and spin coupling
scheme. It is obvious that the va too, will deform
continuously and can be unambiguously followed along
any path in nuclear coordinate space.
4. It is now presumed that strong changes in the

electronic structures of molecular wavefunctions along
such paths typically result from strong changes in their
con®gurational expansion coe�cients rather than from
sudden drastic changes in orbital shapes. This premise is
based on the general experience that orbitals change
only gradually with molecular deformations.
5. The changes in the electronic structure of a wave-

function, as it deforms along such paths, can then be
identi®ed by monitoring the changes of its expansion
coe�cients in terms of the problem-adapted deforming
con®gurations discussed under item 3, in particular for the
short dominant part of the expansion that determines
the electronic structure characteristics. A wavefunction
is considered to essentially maintain its electronic struc-
ture along a nuclear coordinate path if the �deforming�
con®gurations in its dominant part remain the same. If this
holds true for all points in a nuclear coordinate region,
then we consider the state to have a uniform electronic
structure in this region. In this sense, we equate electronic
structure uniformity with con®gurational uniformity.

2.3 Using con®gurational uniformity as a criterion
for the construction of diabatic states

Assume then that in the expansions of w1;w2; . . . wN
given by Eq.(1), a relatively small number of dominant
con®gurations vd�d � 1; 2; . . . ;M ; �N � M>L�� can be
identi®ed as determining the electronic structures of the
N adiabatic states. In the vicinity of real or avoided
crossings, those con®gurations that dominate in a given
adiabatic state will then be di�erent in di�erent local
regions of the nuclear coordinate space, i.e. the adiabatic
states will not exhibit con®gurational uniformity over
the entire region.

It is now furthermore assumed that the M dominant
con®gurations can be divided into N groups, say

Group G1: Configurations corresponding to

the indices d � 1; 2; . . . . . . a1;
Group G2: Configurations corresponding to

the indices d � �a1 � 1�; . . . . . . a2;
. . .

Group Gk: Configurations corresponding to

the indices d � �akÿ1 � 1�; . . . ak;

. . .

Group GN: Configurations corresponding to

the indices d � �aNÿ1 � 1�; . . . aN �M;

such that, in any given adiabatic wavefunction, all
members of any one group Gk are always simultaneously
dominant or not. The example discussed in Sect. 6
illustrates these general statements.

If the described conditions prevail, then it is reason-
able to surmise that the N adiabatic states wn can be
expressed as superpositions of N diabatic states /k, each
of which is dominated, everywhere in nuclear coordinate
space, by the con®gurations of one and the same con-
®guration group Gk. We therefore postulate the existence
of N diabatic states /k with con®gurational expansions
as given by Eq. (4) such that the expansion of /k is
dominated by the con®gurations belonging to one group Gk
everywhere in the considered nuclear coordinate region. It
will be shown in Sect. 5 how this criterion can be used to
determine the matrix T.

3 Adaptation of MOs to diabatization

3.1 Criterion

The possibility of associating con®guration groups Gk
with diabatic states is contingent upon an appropriate
choice of MOs. Consider, for instance, two adiabatic
states w1;w2 constructed from two MOs u1; u2 as follows

w1�0:9950v1 � 0:0999v2; w2 � ÿ0:0999 v1 � 0:9950 v20

where

v1 �Afu1u1abg; v2 �Afu2u2abg:
In this case, the two determinants v1 and v2 manifestly
dominate in w1 and w2 respectively and, hence, can be
chosen as diabatic states /1;/2. If we use, however, the
orbitals v1; v2, de®ned by

u1 � �v1 � v2�=p2; u2 � �v1 ÿ v2�=p2;
to express the same adiabatic states, then we have

w1 � 0:5475�v01 � v02� � 0:4476�v03 � v04�;
w2 � 0:4476�v01 � v02� ÿ 0:5475�v03 � v04�;
where

v01 � Afv1v1abg; v02 �Afv2v2abg; v03 �Afv1v2abg;
v04 �Afv2v1abg:

49



In this expansion, none of the con®gurations v0k are
dominant and they are of no help in recognizing diabatic
component states.

This observation exhibits the conceptual advantage of
the full con®guration space concept for the problem at
hand in as much as, in such a space, the orbitals can be
transformed so as to become optimally suited for the
generation of dominant con®gurations that form distinct
groups Gk, as presumed above for the diabatization
procedure. In many instances, the natural orbitals of the
state-averaged density matrix have been found satisfac-
tory for this purpose and we shall see an example in
Sect. 6. But this is not always so, as is in fact also
illustrated by the paradigm just examined. In that case,
the state-averaged density matrix happens to have
degenerate eigenvalues and, hence, no unique natural
orbitals.

A general diabatization adaptation of MOs in a full
space can be inferred from the discussed paradigm by
examining its orbital occupation numbers p�us�; p�vm�
listed in Table 1. It is apparent that the following pos-
tulate is promising:

The MOs us most likely to generate con®gurations
e�ective for the resolution of adiabatic states in terms of
diabatic states are those that maximize the sum RnRs
�p�us;wn��2, where p�us;ws� denotes the occupation num-
ber of the orbital us in the adiabatic state wn.

3.2 Determination of diabatization-adapted orbitals

Let vm�m � 1; 2; 3; . . .� be the original orbitals and
us�s � 1; 2; 3; . . .� the diabatization-adapted orbitals to
be found:

us � RmvmUms; UU y � I :

The ®rst-order density matrix elements pn
lm of the

adiabatic wavefunctions wn in the basis vm, de®ned by

qn�1; 2� � Rlmpn
lmvl�1�vm�2�;

are known. The density matrix elements in the basis us
are then given by

qn�1; 2� � Rrs�UypnU�rsur�1�us�2�:
Since the occupation numbers are the diagonal elements,
the criterion stated above requires thus maximization of
the sum

D�U� � RnRs��UypnU�ss�2
� RjkRlmPjk;lmRsUjsUksUlsUms;

�6a�

where

Pjk;lm � Rnpn
jkpn

lm: �6b�
This expression is, however, identical in structure with
the ``localization sum'' encountered in the context of
orbital localization and Edmiston and Ruedenberg [13]
have shown how to maximize such an expression with
respect to the orthogonal transformation U. Adaptation
of their method to the present form of the four-index
quantities Pjk;lm yields the following procedure.

The maximization of D is achieved iteratively by a
sequence of orthogonal 2� 2 Jacobi rotations J12; J13;
J23; J14; J24; J34; J15; J25; . . . where each Jij has the form

�Jij�ii � �Jij�jj � cos cij; �Jij�ij � ÿ�Jij�ji � sin cij;

�Jij�lm � dlm; for lm 6� ii; jj; ij; ji: �7a�
After a Jacobi rotation Jij has been determined, the
density matrix p of the previous iteration is updated to
the new density matrix �Jij�ypnJij. The value of cij used
for Jij is determined so that the partial sum

Rnf���Jij�ypnJij�11�2 � ���Jij�ypnJij�22�2g
(formed from the updated matrices) is maximized.
According to Ref. [13], this is accomplished by choosing
for cij the value satisfying the equations

cos 4cij � Aij=�A2
ij � B2

ij�1=2;
sin 4cij � Bij=�A2

ij � B2
ij�1=2; ÿp � 4cij � p; �7b�

with

Aij � Pij;ij ÿ �Pii;ii � Pjj;jj ÿ 2Pii;jj�=4; Bij � Pii;ij ÿ Pjj;ji:

In the present case, the expressions become

Aij � RnAn
ij; An

ij � �pn
ij�2 ÿ �pn

ii ÿ pn
jj�2=4; �7c�

Bij � RnBn
ji; Bn

ij � �pn
ii ÿ pn

jj�pn
ij: �7d�

Thereby, the sum D of Eq.(6a) is found to increase by
the amount

DD�J ij� � Rnf���Jij�ypnJij�11�2 � ���Jij�ypnJij�22�2g
ÿ Rnf�pn

11�2 � �pn
22�2g

� Aij � ��Aij�2 � �Bij�2�1=2:
�8�

The sequence of the rotations Jij is determined by going
through all possible o�-diagonal ij-combinations in a
systematic order. Several passes through all ij-index
pairs are usually required to achieve a desired conver-
gence. Before executing any one transformation Jij,
the gain is calculated according to Eq. (8) and, if it lies
below the convergence threshold, this transformation is
skipped. Upon approach to overall convergence, this
happens for a larger and larger fraction of the possible

Table 1. Occupation numbers
p�us�; p�vm� of the orbitals us0vm
discussed in Sect. 3

p�u1� p�u2� �p�u1��2 � �p�u2��2 p�v1� p�v2� �p�v1��2 � �p�v2��2

In w1 1.98 0.02 3.92 1.00 1.00 2.00
In w2 0.02 1.98 3.92 1.00 1.00 2.00
Sum 2 2 7.84 2 2 4.00
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Jacobi rotations. Further details are given in the papers
of Ref. [13].

After the aggregate optimizing orbital transformation
U has been determined, the adiabatic wn must be ex-
panded in terms of the con®gurations generated by the
diabatization-adapted orbitals uk. There exist two
methods for accomplishing this without repeating the CI
calculation, one by Malmqvist [14] and another by
Atchity and Ruedenberg [15]. We call the resulting con-
®gurations and expansion coe�cients, too, diabatization-
adapted.

4 Following MO deformations

As discussed under item 3 of Sect. 2.2, the assessment of
con®gurational uniformity over a region in coordinate
space depends upon the ability to follow MO deforma-
tions in electronic coordinate space as the molecule
deforms along a continuous path in nuclear coordinate
space. This tracking requires the establishment of a one-
to-one correspondence between MOs, de®ned by an
unambiguous intrinsic procedure such as given in
Sect. 3, for di�erent but close-lying points in nuclear
coordinate space.

In order to obtain a rough idea as to which MO for
one such nuclear coordinate point ought to be consid-
ered as a deformed version of a given MO of the same
system for a neighboring point, one can examine the
occupation numbers and their orderings for the two
wavefunctions. However, such orderings do change with
geometrical deformations and it is therefore necessary to
compare the MOs themselves.

A basis for such a comparison is manifestly provided
by the overlap integrals between the MOs in question. If
the molecular deformation is only slight, however, a
simpler procedure is adequate and, perhaps, more ap-
propriate. Both wavefunctions are presumably expressed
in terms of the same type of atomic orbital basis sets, the
only di�erence being that the nuclear coordinates at
which these sets are centered correspond to two slightly
di�erent points in nuclear coordinate space, say P 0 and
P 00. Let the bases for these two points be denoted by AO0i
and AO00i , respectively, and let

MO0 � RiaiAO0i; and MO00 � RibiAO00i
be the expansions of the molecular orbitals MO0 and
MO00 for these two neighboring points in nuclear
coordinate space. Since, by virtue of the standard
construction conventions, a manifest one-to-one corre-
spondence exists between the orbital bases AO0i and AO00i
at these two points, the similarity between the molecular
orbitals MO0 and MO00 can be simply assessed by
examining the inner-product-like quantity

habi �
X

i

âib̂i; âi � ai=
pX

j

a2j ; b̂i � bi =
pX

j

b2j ;

which satis®es the Schwarz inequality ÿ1 � habi � 1.
The correspondence between the various MOs at point
P 0 and those at point P 00 can thus be established by
comparing the quantities habi for all orbital pairs

between the two points. Two corresponding MOs should
have a value of j habi j close to unity. If habi should turn
out to be close to )1, then the sign of one of the two
MOs must be reversed.

If the molecule has the same symmetry for the points
P 0 and P 00, then the orbitals MO0 and MO00 must of course
belong to the same irreducible representation.

5 The diabatization transformation

Assume, then, that by means of the tools outlined in
Sect. 3 and 4, a set of diabatization-adapted con®gu-
rations has been determined that deform unambigu-
ously throughout the nuclear coordinate region and
among which a set of dominant con®gurations can be
identi®ed that fall into groups G1;G2; . . . as described in
the ®nal subsection of Sect. 2. The transformation
matrix T will now be determined from the projections of
the adiabatic states on the space of the dominant
con®gurations. According to Eqs. (3) and (5), it will
then be applied to the full expansions of the adiabatic
states to generate diabatic states exhibiting con®gura-
tional uniformity.

5.1 Calculation of T

We ®rst state the formulas for calculating the transfor-
mation matrix T. The derivation will be given in the next
subsection.

The transformation from adiabatic to diabatic states
is achieved by the orthogonal matrix

T � ~T�~Ty~T�ÿ1=2 �9�
where ~T is the nonorthogonal matrix whose k-th column,
~Tnk�n � 1; 2; . . . N� is obtained as the eigenvector with the
largest eigenvalue of the positive de®nite N � N sym-
metric matrix

R�k� � Sÿ1=2S�k�Sÿ1=2 �10�
whose factors are de®ned as follows. The elements of the
matrix S are given by

Snm �
X

a

�cancam; where
X

a

� implies a � 1; 2; . . . ;M ;

�11�
and the elements of the matrix S�k� are obtained as the
sums

S�k�nm �
X

a

kcancam;

where
X

a

k implies a � akÿ1 � 1; . . . ; ak:
�12�

Thus, the sum in Eq. (11) goes over all dominant
con®gurations whereas the summation in Eq. (12) goes
only over the dominant con®gurations in the group Gk
and, hence, is di�erent for every k. It is readily veri®ed
that the elements of the matrix R�k� can also be expressed
in the form
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Rk
mn �

X
a

kc0amc0an �13�
with

c0an �
X

m

cam�Sÿ1=2�mn: �14�

As in Sect. 2, the indices k, m, n always run from 1 to N.

5.2 Derivation

According to the discussion in Sect. 2, the desired
transformation is to be deduced from the information
contained in the dominant parts of the adiabatic states
which are given by the truncated expansions

wt
n �

X
a

�vacan �15�

[the de®nition of the summation symbol was given in
Eq. (11)]. By virtue of the orthonormality of the con-
®gurational basis, these truncated states are seen to have
the overlap matrix

hwt
njwt

mi � Snm 6� dnm; �16�
where S is the matrix de®ned in Eq. (11). Hence, the wt

n
are in general nonorthogonal. Since our objective is the
deduction of an orthogonal transformation, the ®rst step
is to orthogonalize the wt

n while changing them as little
as possible. This is accomplished by a symmetric
orthogonalization which yields the orthogonalized trun-
cated adiabatic states

w0n �
X

a

�vac0an; �17�

where the c0an are the coe�cients de®ned in Eq. (14). As
before, all summations over n and m run from 1 to N .

We now determine the particular normalized linear
combination of these w0n which has the largest projection
on the con®guration space of a speci®c group Gk, i.e.
which is dominated by the con®gurations of this group.
If such a linear combination is denoted by

f �
X

m

w0mtm �
X

a

�vada; da �
X

m

c0amtm;
X

m

t2m � 1;

�18�
then the square of its projection onto the space of the
group Gk is

P 2
k �

X
a

kd2a �
X

a

k
X

m

c0amtm

 !2

�
X

m

X
n

Rk
mntmtn;

�19�
where the summation over a is now the one given in
Eq. (12) and the matrix R�k� is the one de®ned in Eq. (13).
Since the square of the projection is always positive, it
assumes its maximal value when the column vector
ft1; t2; . . . tNgy is equal to the eigenvector with the largest
eigenvalue of R�k�, say f~T1k; ~T2k; . . . ~TNkgy. The linear
combination of the orthogonalized truncated diabatic
states with the largest projection in the con®guration
space of group Gk is thus given by

fk �
X

m

w0m ~Tmk: �20�

Such a linear combination can be found for every group
Gk, so that Eq. (20) becomes an N � N transformation.
However, since the various column vectors in this matrix
T come from di�erent eigenvalue problems, they are not,
in general, mutually orthogonal. Since the w0n, on the
other hand, are orthogonal, the overlap matrix of the
functions fk is found to be

h fjjfki � �~Ty~T�jk: �21�
The ®nal step is then to construct orthogonal truncated
states /0k which di�er as little as possible from the
nonorthongonal functions fk. This is achieved by
symmetrically orthogonalizing them which leads to

/0k �
X

n

w0nTnk ; �22�

where T is just the orthogonal matrix de®ned in Eq. (9).
These N orthogonal linear combinations of the or-

thonormalized truncated adiabatic states are such that
each /0k is dominated by the con®gurations in one cor-
responding group Gk. They thus furnish appropriate
diabatic wavefunctions for the truncated adiabatic
wavefunctions. Since the latter embody the essential
electronic structure characteristics of the actual adia-
batic states, it stands to reason that the orthogonal
transformation matrix T will, similarly, generate diaba-
tic states /k when used in conjunction with the actual
adiabatic states wn, as expressed by Eqs. (4) and (5).

5.3 Sign adjustments

A particular numerical aspect of the diabatization
procedure requires special attention, namely the conti-
nuity of the variation of the diabatic states and, conse-
quently, of any matrix elements calculated between them
over the nuclear coordinate range of interest. Two
possible ambiguities in the adiabatic states can lead to
apparent discontinuities in the diabatic states. One arises
from the fact that the adiabatic wavefunctions are
originally obtained by independent CI calculations at
di�erent points, a circumstance which can easily cause
arbitrary sign changes in going from one point to a
neighboring one. The other arises from the geometric
phase theorem [16] according to which the adiabatic
wavefunctions must change sign after the path followed
has completed a full loop around an intersection point,
even if their continuity is carefully monitored from point
to point.

Since diabatic states do not su�er from the latter
complication, numerical confusion is most simply side-
stepped by monitoring the resulting diabatic states, ad-
justing their signs, and possibly interchanging their
labels, such that their con®gurational coe�cients vary
continuously over the entire region. Consistent adiabatic
states can then be obtained, a posteriori, by changing, if
necessary, the sign of one or several rows of the or-
thogonal matrix T of Eq. (9) at any one point so that the
elements of T vary continuously relative to neighboring
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points. Of course, if a continuous path is followed to
completion on a loop around an intersection, then each
adiabatic state will have changed its sign after returning
to the same point [16].

6 Quantitative application

6.1 The 11A1 and 21A1 states of ozone

We illustrate the described procedure by applying it to
the two lowest 1A1 states of the O3 molecule in a region
of strong interaction between them, namely in the
vicinity of a conical intersection.

We have shown previously [17] that these two adia-
batic states have the C2v restricted PES shown in Fig. 1.
The internal coordinates are explained by Fig. 2. They
are the Cartesian coordinates of the end atom inside the
box with the central atom ®xed. The 11A1 ground state
surface, shown on the left-hand panel, has two minima,
viz. the experimentally observed open structure, with an
angle of 116�, and the, as yet, experimentally unobserved
equilateral triangle ring structure. The latter lies about
30 kcal/mol above the open minimum and slightly above
the dissociated species O2 �O. A ridge separates the

ring-structure basin from the open-structure basin and
the minimum on this ridge is the transition state between
the aforementioned minima. The excited 21A1 state PES,
on the other hand, has a minimum which, as shown on
the right-hand panel of Fig. 1, lies within 0.04 AÊ of the
transition state of the 11A1 PES. In the very same region
these two PES of like symmetry touch at the indicated
conical intersection.

The previous full-optimized-reaction-space (FORS)
calculation [17] utilized a full-valence-space consisting of
4067 con®guration state functions (CSFs). Since it
showed that the 2s-type MOs are always nearly doubly
occupied, we included the latter in the inactive space for
the present calculations. This left nine active MOs,
generating a full space of 666 spin-adapted CSFs (1788
determinants).

6.2 Determination of diabatization adapted orbitals
and con®gurations

To illustrate our method, we ®rst consider points on the
line S in Fig. 1. The determination of the diabatization
adapted orbitals is illustrated for two points, Bÿ and B�,
located within 0.017 AÊ on either side of the point B

Fig. 1.Adiabatic PES of the two lowest 1A1 states of ozone.Left panel: 1
1A1 ground state, denoted byG.S. Right panel: 2

1A1 excited state, denoted
by EXC.S.
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which lies on the ridge separating the ring-minimum
basin and the open-minimum basin of the ground state.
Table 2 shows the distribution of the 12 active electrons
over the 9 active orbitals for three orbital types, all of
which span the state-averaged-MCSCF optimized full
active space, namely the diabatization-adapted orbitals,
the state-averaged natural orbitals and the atom-local-
ized orbitals [18]. It is apparent that, in this case, the
diabatization adaptation method yields orbitals very

similar to the state-averaged natural orbitals. It is
furthermore seen that, for these orbitals,

(i) the electron population is concentrated into fewer
essential orbitals than is the case for the atom-
localized orbitals;

(ii) the two states w1;w2 di�er essentially in the occu-
pations of only two orbitals, viz. orbitals Nos. 5 and
8;

(iii) the occupations of these two orbitals switch their
magnitudes upon crossing the ridge from Bÿ to B�.

The coe�cients of the dominant con®gurations in w1
and w2, generated from the diabatization-adapted or-
bitals, are given in Table 3 for four points shown on the
line S of Fig. 1. It is seen that the expansion in terms of
diabatization-adapted con®gurations accomplishes

(i) a separation of dominant con®gurations from con-
®gurations with small coe�cients in w1 as well as in
w2 since, in both states, four con®gurations account
for over 96% of the normalization;

(ii) a separation of the dominant con®gurations in w1
from those in w2, the con®gurations v1; v2 forming
group G1 and the con®gurations v3; v4 forming
group G2;

(iii) that the con®gurations in each group stay together
through the transition region (point B) where both
groups contribute to both states.

The renormalized coe�cients of the four dominant CSFs
v1; v2; v3; v4 for both adiabatic states are displayed in
Fig. 3, where the points A, B, C, D of the line S are also
marked. Between A and B, the CSFs v3; v4 dominate in
11A1 whereas v1; v2 dominate in 21A1. Both states
undergo a switch in character near point B, where the
pair of coe�cients labeled c1 and c2 exchange dominance
with the two coe�cients c3 and c4. Between C and D, the
CSFs v1; v2 dominate in 11A1 whereas v3; v4 dominate
in 21A1.

6.3 Determination of diabatization transformation

We thus have the situation presumed in Sect. 2, and it is
reasonable to expect that two diabatic states can be
constructed, each of them dominated throughout by one
and the same pair of CSFs.

Application of Eq. (9) at 36 points along the line S in
Fig. 1 yields a continuously varying orthogonal 2� 2
transformation

T � cos c sin c
ÿ sin c cos c

� �
:

The variation of the angle c along the line S is shown in
Fig. 4. The continuity of this curve was achieved by
appropriate sign adjustments as discussed in Sect. 5.3.
Following c on a closed loop will of course result in a
change of c by p, yielding the geometric phase change of
the adiabatic states [16].

Transformation of the adiabatic states by the matrix
T yields the coe�cients of the diabatic states. The nor-
malized dominant coe�cients dak of the latter along S

Fig. 2. C2v restricted internal Cartesian coordinate system for ozone

Table 2. Orbital populations in the adiabatic states w1 and w2 at the
points B) and B+ for various molecular orbital choices in the full
valence space

MOa Diab-Adptb Avge-NOc Atom-Locd

In w1 In w2 In w1 In w2 In w1 In w2

At point B+
1a1 1.983 1.986 1.984 1.986 1.108 1.018
2a1 1.993 1.864 1.993 1.864 1.502 1.467
3a1 0.019 0.016 0.019 0.016 1.385 1.382
1b2 1.977 1.981 1.977 1.981 1.034 1.170
2b2 1.906 0.235 1.906 0.235 1.899 0.233
3b2 0.026 0.020 0.026 0.019 0.975 0.832
1b1 1.983 1.999 1.983 1.998 0.867 1.950
2b1 0.283 1.922 0.283 1.922 1.399 1.970
1a2 1.829 1.977 1.829 1.977 1.829 1.977

SOSQe 45.8094 45.8092 35.8964

At point B)
1a1 1.985 1.983 1.985 1.983 1.015 1.110
2a1 1.881 1.993 1.881 1.993 1.493 1.521
3a1 0.017 0.019 0.017 0.019 1.375 1.365
1b2 1.981 1.976 1.981 1.976 1.165 1.021
2b2 0.170 1.955 0.170 1.955 0.175 1.952
3b2 0.020 0.027 0.020 0.027 0.831 0.984
1b1 1.999 1.983 1.999 1.983 1.965 0.863
2b1 1.949 0.274 1.949 0.274 1.983 1.393
1a2 1.999 1.790 1.999 1.791 1.999 1.791

SOSQe 46.0682 46.0681 36.1375

a The labels a1, b2 denote r orbitals, symmetric with respect to the
molecular plane; the labels b1, a2 denote p orbitals, anit-symmetric
with respect to that plane. The molecular orbitals (MOs) of the ®rst
two columns are almost identical with those of the third and fourth
columns, but di�erent from those in the last two columns
b Diabatization-adapted MOs
c State-averaged natural orbitals
d Atom-localized FORS MOs
e Sum of squares of all MO populations in Y1 and Y2
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are shown in Fig. 5. Each diabatic state is seen to be
dominated by only two con®gurations whose coe�-
cients, moreover, vary only slowly along S. It should be
noted that the two nondominant con®gurations do not
have zero coe�cients. In both diabatic states, they have
an order of magnitude of about 10ÿ2. Comparison of
Figs. 3 and 5 reveals the con®gurational simpli®cation
obtained by the transformation to diabatic states.

6.4 The diabatic states

The results obtained along the line S are in fact found to
hold across the entire region encompassing the three
minima and the intersection. Indeed, we have shown
previously [17, 19, 20] that the adiabatic wavefunctions
of the two states are dominated by only four con®gu-
ration state functions out of a total of 4067 CSFs in the
FORS space based on state-averaged natural orbitals. In

the ring basin (the upper left-hand part of each panel in
Fig. 1), two of these CSFs are dominant in 11A1 and the
other two are dominant in 21A1. In the open basin (the
lower right-hand part of each panel), the roles of the
dominant CSFs in the adiabatic states are reversed.

Application of the described procedure over the
entire region yields the transformation matrix T every-
where. From it, the diabatic states /1;/2 as well as their
matrix elements Hjk � h/jjH j/ki are found. The diabatic
PES Hii are exhibited in Fig. 6.

Also shown in this ®gure are the curves �H11 ÿ H22� �
0 and H12 � 0. We have discussed elsewhere [21] that the
dominance of the diabatic states in the adiabatic states
switches upon crossing the curve �H11 ÿ H12� � 0 and
that the coe�cients of the nondominant diabatic ad-
mixtures in the adiabatic states change their signs upon
crossing the curve H12 � 0. This is indeed con®rmed by
the plot of Fig. 4 displaying the mixing angle c along the
line S. It crosses the former curve at point B where

Table 3. Coe�cients of domi-
nant diabatization-adapted
con®gurations in w1 and w2 at
four points on the line S

a Twelve electrons doubly oc-
cupy the same six orbitals in all
four dominant con®gurations.
Listed are only those orbital
occupations in which these
con®gurations di�er

Con®gurationa Point A Point B) Point C Point D

State w1
v1 = ......(2a1)

2 (2b2)
2 (2b1)

2 (1a2)
0 )0.0261 0.0099 0.2279 0.2012

v2 = ......(2a1)
2 (2b2)

2 (2b1)
0 (1a2)

2 )0.0423 )0.1557 )0.9561 )0.9624
v3 = ......(2a1)

2 (2b2)
0 (2b1)

2 (1a2)
2 0.9634 0.9467 0.0137 0.0068

v4 = ......(2a1)
0 (2b2)

2 (2b1)
2 (1a2)

2 )0.2090 )0.2335 0.0158 0.0294

Rci2 0.9743 0.9751 0.9665 0.9676

State w2
v1 = ......(2a1)

2 (2b2)
2 (2b1)

2 (1a2)
0 )0.3488 )0.3154 )0.0292 0.0188

v2 = ......(2a1)
2 (2b2)

2 (2b1)
0 (1a2)

2 0.9158 0.9166 )0.0021 )0.0164
v3 = ......(2a1)

2 (2b2)
0 (2b1)

2 (1a2)
2 0.0279 0.1446 0.8641 0.5759

v4 = ......(2a1)
0 (2b2)

2 (2b1)
2 (1a2)

2 )0.0167 )0.0483 )0.4843 )0.8080

Rc2i 0.9614 0.9629 0.9821 0.9851

Fig. 3. Dominant coe�cients of the two adiabatic states along the line S of Fig. 1. The labels c1 ÿ c4 refer to the four CSFs in Table 3
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c � p=2, and it crosses the latter curve at point C where c
changes its sign. As is well known [22], the conical in-
tersection occurs where the curves �H11 ÿ H22� � 0 and
H12 � 0 cross on Fig. 6.

6.5 Comparison to previous algorithm

In Table 4, the diabatization transformation obtained by
the present procedure is compared with the transforma-
tion obtained by the algorithm we have given previously
[12]. It is apparent that, in this case, the diabatic states
obtained by the two methods are identical. For the case
of two adiabatic/diabatic states, the previous construc-

tion of the transformation T may be somewhat simpler
than that given by Eq. (9)�., but the present algorithm is
considerably simpler when more than two adiabatic/
diabatic states are involved.

7 Generality

Although the described method has been formulated in
the context of a full con®guration space, it is readily seen
to be equally applicable when the adiabatic states are
given in terms of a set of con®gurations that do not span
a full space:

First, the construction of the diabatization-adapted
MOs requires only the ®rst-order density matrices of the
adiabatic states and it makes no di�erence whether the
latter originate from a full con®guration space or not.

Second, the construction of the diabatization trans-
formation T requires the expansion of the wavefunctions
wn in terms of the diabatization-adapted con®gurations.
While the total number of the latter may greatly exceed
that of the original con®gurations and, indeed, possibly
®ll the full con®guration space, only the coe�cients of the
dominant con®gurations are required. As mentioned at
the end of Sect. 3, these can be found by direct trans-
formation without solution of any CI problem.

Fig. 4. Transformation angle c, expressed in units of p, along the line S
of Fig. 1

Fig. 5. Dominant coe�cients of the two diabatic states along the line S of Fig. 1. The labels d1 ÿ d4 refer to the same CSFs as in Fig. 3

Table 4. Comparison of the angles c=p obtained at four points
along the line S by the present and the previous diabatization
methods

c=p from Point A Point B Point C Point D

Present
method

0.49530808 0.24957514 0.00056770 )0.00709466

Previous
method [12]

0.49530808 0.24957514 0.00056770 )0.00709466
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Third, after T has been calculated through the algo-
rithm of Sect. 5, the diabatic states can be obtained by
Eq. (5) from the adiabatic states in terms of the original
expansions or in terms of the diabatization-adapted
con®gurations.

Fourth, the energy matrix between the diabatic states
can be obtained directly from the adiabatic energies
according to h/jjHj/ki � RnEnTnjTnk .

The described procedure is thus completely general.
The only question that remains open is whether it is
always possible to identify disjoint dominant con®gu-
ration groups Gk that can be associated with diabatic
states, as described in Sect. 2.3. A prerequisite is cer-
tainly that the orbitals and con®gurations must be suf-
®cient in number for a satisfactory representation of all
adiabatic states wn under consideration. This question
deserves further exploration.
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